區間的读音 區間的意思

区间 (数学概念)在数学里,区间通常是指这样的一类实数集合:如果x和y是两个在集合里的数,那么,任何x和y之间的数也属于该集合。例如,由符合0 ≤ x ≤ 1的实数所构成的集合,便是一个区间,它包含了0、1,还有0和1之间的全体实数。其他例子包括:实数集,负实数组成的集合等。 区间在积分理论中起着重要作用,因为它们作为最"简单"的实数集合,可以轻易地给它们定义"长度"、或者说"测度"。然后,"测度"的概念可以拓,引申出博雷尔测度,以及勒贝格测度。 区间也是区间算术的核心概念。区间算术是一种数值分析方法,用于计算舍去误差。 区间的概念还可以推广到任何全序集T的子集S,使得若x和y均属于S,且x<z<y,则z亦属于S。例如整数区间[-1...2]即是指{-1,0,1,2}这个集合。
  • jiān

“區間”的读音

拼音读音
[qū jiān]
汉字注音:
ㄑㄩ ㄐㄧㄢ
简繁字形:
区间
是否常用:

“區間”的意思

基本解释

基本解释

区间 qūjiān

[part of the normal route (of a bus,etc.)] 某一整体内的一个分段

置信区间

辞典解释

区间  qū jiān   ㄑㄩ ㄐㄧㄢ  

交通运输中,为管理行车而于同一路线中再划分的区段。
如:「客运公司将全段路程划分为数个区间,并在尖峰时间加开区间车。」

英语 interval (math.)​

德语 interregional (Adj)​, Intervall

法语 intervalle (math.)​

网络解释

区间 (数学概念)

在数学里,区间通常是指这样的一类实数集合:如果x和y是两个在集合里的数,那么,任何x和y之间的数也属于该集合。例如,由符合0 ≤ x ≤ 1的实数所构成的集合,便是一个区间,它包含了0、1,还有0和1之间的全体实数。其他例子包括:实数集,负实数组成的集合等。
区间在积分理论中起着重要作用,因为它们作为最"简单"的实数集合,可以轻易地给它们定义"长度"、或者说"测度"。然后,"测度"的概念可以拓,引申出博雷尔测度,以及勒贝格测度。
区间也是区间算术的核心概念。区间算术是一种数值分析方法,用于计算舍去误差。
区间的概念还可以推广到任何全序集T的子集S,使得若x和y均属于S,且x<z<y,则z亦属于S。例如整数区间[-1...2]即是指{-1,0,1,2}这个集合。

“區間”的单字解释

】:[qū]1.隱匿。2.區域。有一定界限的地方或範疇。3.行政區劃單位:自治區、市轄區、縣轄區等。4.指區政府及其所在地。5.住宅。6.專指小屋。7.畦;畦田。8.區別;劃分。9.小,微小。10.量詞。白玉五雙謂之“區”。11.量詞。所;處。12.量詞。座;尊。13.同“”。[ōu]1.量器名。2.古代農民播種時所開的穴或溝謂之“區”。3.見“區脫”。4.姓。
】:均同“”。

“區間”的相关词语

* 區間的读音是:qū jiān,區間的意思:区间 (数学概念)在数学里,区间通常是指这样的一类实数集合:如果x和y是两个在集合里的数,那么,任何x和y之间的数也属于该集合。例如,由符合0 ≤ x ≤ 1的实数所构成的集合,便是一个区间,它包含了0、1,还有0和1之间的全体实数。其他例子包括:实数集,负实数组成的集合等。 区间在积分理论中起着重要作用,因为它们作为最"简单"的实数集合,可以轻易地给它们定义"长度"、或者说"测度"。然后,"测度"的概念可以拓,引申出博雷尔测度,以及勒贝格测度。 区间也是区间算术的核心概念。区间算术是一种数值分析方法,用于计算舍去误差。 区间的概念还可以推广到任何全序集T的子集S,使得若x和y均属于S,且x<z<y,则z亦属于S。例如整数区间[-1...2]即是指{-1,0,1,2}这个集合。